Synchronized Transform-Limited Operation of 10-GHz Colliding Pulse Mode-Locked Laser

Abstract—We report a 10-GHz colliding pulse mode-locked laser fabricated with integrated active–passive waveguides. The laser fabrication adopted a deep reactive ion etching and single-step metal–organic vapor phase epitaxy regrowth process for forming the buried heterostructure waveguide. Clean output pulses resulted from laterally tilting the active–passive interface and effectively suppressing residual back-reflections at the interface. Hybrid mode-locking resulted in a synchronized transform-limited sech² optical waveform. Pulswidth, chirp, timing jitter, and frequency-locking range were investigated through systematic device biasing condition optimization.

Index Terms—Active–passive integration, colliding pulse mode-locked (CPM) laser, frequency-locking range, hybrid mode-locking (HML), timing jitter, transform-limited pulse.

Semiconductor mode-locked lasers are very attractive ultracompact sources for short optical pulse generation, with applications in high-speed optical data processing, optical time-division-multiplexed communication systems [1], and integrated photonic Microsystems [2], with short unchirped pulses and low timing jitter as important requirements. For synchronized laser output with reduced timing jitter, electrical hybrid mode-locking (HML) at the fundamental or a subharmonic frequency [3], [4] provides a simpler optical setup over optical injection-locking approaches [5]. Lower repetition rate mode-locked lasers around 10 GHz are also desirable for relaxing the cost and complexity of electronics and important for lower bit rate applications. The optically pumped vertical-external-cavity surface-emitting laser [6] design realized 10-GHz transform-limited output, but required external cavity with dispersion compensation elements and off-chip SESAME absorber. Standard long cavity all-active mode-locked lasers for achieving the lower repetition rate tend to suffer from strong pulse shaping effects resulting in strongly chirped broad pulse and enhanced noise level [7]–[10]. With active–passive integration, these effects can be reduced; however, residual interfacial back-reflection can seriously degrade the mode-locking performance [3], [11].

Colliding pulse mode-locked (CPM) lasers first demonstrated in the external cavity configuration [12] and later monolithically [1], offer deeper saturation of the saturable absorber (SA) and more effective pulse narrowing compared to traditional mode-locked lasers. This letter discusses the fabrication and the performance of a 10-GHz CPM laser with an integrated active–passive waveguide demonstrating reduced pulse shaping and chirping effects. In contrast to previously reported low-repetition rate CPM laser designs [3], [7], our design utilizes only one pair of symmetric gain sections sandwiching the central SA section for simplified biasing control and reduced number of active–passive interfaces. The integrated waveguide employed a laterally tilted interface, which significantly reduces residual interfacial reflections, resulting in clean output pulses. We also adopted a simple and robust buried heterostructure (BH) waveguide formation process involving deep reactive ion etching (RIE) and a subsequent metal–organic vapor phase epitaxy (MOVPE) regrowth. We report for the first time, synchronized, transform-limited, and low jitter 10-GHz CPM operation under HML. Systematic investigations of dc and radio-frequency (RF) device biasing conditions for optimizing pulswidth, chirp, and timing jitter performance are also reported in detail.

The CPM laser fabrication process started on an MOVPE-grown InP wafer with an epitaxial-structure consisting of a 2-μm-thick n-type InP lower cladding layer, an n-type 0.5-μm-thick InGaAsP quantum waveguiding layer of bandgap wavelength 1.15 μm (1.15Q), and a six (6-nm In0.25Ga0.75As) quantum-well active region. A 250-nm SiO2 layer deposited by plasma-enhanced chemical vapor deposition (PECVD) underwent photolithography and RIE to define the 2000 × 20 μm² active section. Outside this region not covered by SiO2 pattern, selective wet etching removed the six quantum wells to expose the passive waveguide sections. After the SiO2 mask removal, a thin (100 nm) undoped InP layer, a 2-μm-thick p-type InP cladding layer, and a 100-nm-thick highly doped p-type InGaAs contact layer were MOVPE regrown across the entire wafer. The continuous waveguiding layer under the active region allowed the waveguide mode to propagate through the active–passive interface with minimal coupling loss and back-reflection.

The subsequent waveguide formation consisted of masking the ridge with a 250-nm patterned PECVD SiO2 layer, while a methane–hydrogen-based RIE process deep etched the laser ridge past the 1.15Q waveguiding layer. An MOVPE regrowth process then covered the waveguide sidewalls with a regrown 2-μm-thick Fe-doped InP layer. This relatively simple process created a BH structure with only a single regrowth step, and
providing sidewall passivation, planarization, and electrical insulation. Subsequent processes included standard lapping, p- and n-type metallizations, and rapid-thermal-annealing. Fig. 1(a) shows the cross-sectional view of the BH ridge. Wet etching removal of the p-InGaAs layer in the 15-μm gap between the gain and SA resulted in 11-kΩ electrical isolation for the 4-μm waveguide, while the passive waveguide loss was 4 dB/cm.

Fig. 1(b) shows the cross-sectional view along the laser ridge revealing a very smooth interface between the active and the passive sections. Fig. 1(c) shows the top view of the fabricated CPM laser. The 2000-μm trapezoidal shaped active region in the middle of the cavity consists of two gain sections sandwiching the 45-μm-wide central SA section. Passive waveguides extend the active section in both directions to complete the symmetric 8200-μm-long laser cavity. The active–passive interface was laterally tilted at 45° to the waveguide orientation [110], allowing the TE waveguide mode to be incident at nearly Brewster’s angle (with Δn_eff = 0.035 between the active and passive sections) for reduced back-reflection. This eliminates unwanted secondary pulses and compound cavity spectral modes observed in our test lasers with untitled interfaces, which could cause undesirable system performance degradations [2].

For device characterizations, two dc needle probes forward biased the gain sections, while an RF ground–signal–ground probe applied the dc reverse bias voltage and the RF modulation signal to the SA section. A lensed fiber collected the CPM laser output, which after passing through an optical isolator, was amplified with a dispersion compensated erbium-doped fiber amplifier and routed to an optical spectrum analyzer, a 50-GHz digital sampling scope, a 40-GHz RF spectrum analyzer, and an autocorrelator for further analyses.

The laser operated passively mode-locked with the gain sections biased at 153 mA and the SA section biased at −8.4 V, emitting 3.0-ps-wide pulses with a time-bandwidth product of 0.43. Applying RF modulations to the SA resulted in output synchronization to the RF source, at both the fundamental CPM (10.3 GHz) frequency and the \(N = 2 \) subharmonic hybrid mode-locking (SHML) frequency (5.15 GHz), with the \(N = 2 \)

![Image](https://example.com/image.png)
reverse biasing at low biasing levels while saturating at higher level. The pulsewidth also showed a gradual broadening with increasing gain current. The optimal biasing condition of Fig. 2 corresponded to low-gain-current and high SA-reverse-voltage biasing which occurred slightly above the threshold. The pulse shaping in a CPM laser involves the complex interplay of pulse broadening in the gain sections and pulse sharpening mechanisms in the SA sections [10]. Increasing SA reverse biasing voltage resulted in faster carrier sweep-out, more efficient pulse shaping, and shorter pulses. On the other hand, self-phase modulation effects in the gain section increased moderately with higher gain biasing and introducing additional pulse broadening. Further reduction of the pulsewidth can be expected with cavity Q increase through high reflection coating [5], compensating for the passive waveguide loss.

Fig. 4(a) shows the single sideband (SSB) phase noise plot centered at 10.3 GHz, comparing the optimal HML condition of Fig. 2, the passive mode-locking, the RF source (HP8350B) noise floor. The root-mean-square (rms) timing jitter estimation included phase noise integration from 20 kHz to 80 MHz, corresponding to the ITU measurement filter at 10 GHz [9]. For an RF source background of 0.199 ps, the CPM laser under optimal HML had rms jitter of 0.283 ps, while the corresponding passive mode-locking case showed timing jitter of 3.6 ps. Fig. 4(b) shows the timing jitter of the HML case as a function of the RF drive frequency. A frequency-locking range of ×7 MHz with lower jitter was observed, with the minimal jitter condition at 10.3 GHz also matching the optimized biasing condition of Fig. 2. This indicated that with a systematic biasing condition optimization, optimal 10-GHz CPM laser output pulses with minimal pulsewidth, chirp, and timing jitter are simultaneously achieved.

The asymmetric-locking range in Fig. 4(b) is likely related to amplitude and timing instability associated with cyclic wavelength variations, as observed in active mode-locked lasers [13]. Another possible effect is due to the linewidth enhancement α-factor. Mode-locking at the detuned RF drive frequency implies the cavity resonance frequency should shift accordingly, which causes the gain section carrier density and index to change through the carrier plasma effect. Negative frequency detuning requires increased refractive index, which reduces the carrier density and gain due to the α-factor. Positive frequency detuning requires increased carrier population and gain. The laser’s preference for the lowest gain state would make the negative detuning locking the more stable condition compared to the unlocked state, contributing to the asymmetric locking curve.

In summary, we report BH CPM lasers fabricated with a simple MOVPE single-step regrowth-based process, and active–passive integrated waveguide for reducing the pulse shaping effects. Clean output pulses resulted from a 45° laterally tilted active–passive interface. We demonstrated synchronized transform-limited sech² output pulse with relatively low timing jitter at 10.3 GHz, and investigated biasing condition dependence of pulsewidth, chirp, and the frequency-locking range.

REFERENCES