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Abstract “AI/ML for data centres” and “data centres for AI/ML” are defining new trends in cloud 
computing. Disaggregated heterogeneous reconfigurable computing systems realized by photonic 
interconnects and photonic switching expect greatly enhanced throughput and energy-efficiency for 
AI/ML workloads, especially when aided by an AI/ML control plane. 
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Introduction 
Global data centre IP traffic grew 11-fold over the 
past eight years at a Compound Annual Growth 
Rate (CAGR) of 25%, exceeding 20 Zettabytes 
per year by 2021  [1].  More recently, driven by 
the rapid increases in AI and machine learning 
related traffic, some estimates indicate that the 
annual data traffic will increase by over 400´ over 
the next 10 years  corresponding to CAGR of 
82%.  At the same time, the global energy 
consumption in data centers reached 200 TWh in 
2020 with a CAGR of 4.4%.  However, as Fig. 3 
indicates  [2],  [3], the cost of training AI systems 
is doubling every 3.4 months for typical modern 
AI applications, now reaching 1E4 petaflops/s-
days  [2]-- one round of training for the biggest 
models at Facebook can cost “millions of dollars” 
in electricity consumption  [3].  These trends 
indicate some urgent need for fundamental 
changes in the data centre architecture and 
operation since the AI/ML oriented workload 
increases will far outpace the technological 
development backed by the Moore’s Law and the 
Dennard’s Law (the Dennard’s Law already 
became obsolete in 2008 and the Moore’s Law 
has significantly slowed down in recent years).  
Some immediate observations are as follows: (1) 
Data movement, especially, data ingestion for 
training the Data Centre AI/ML system is costly; 
(2) Today’s Data Centres are dominantly made of 
the von Neumann architecture which constantly 
requires data movements between processing 
units and memory; (3) While Data Centres 
employ accelerators, the system architecture 
remain mostly homogeneous; (4) Cascaded 
stages of electronic switches limit throughput, 
adds latency, and consume energy.  The problem 
compounds as the data centre scale up and scale 
out.   [1] 

This paper discusses a number of possible 
strategic solutions by introducing: (1) 
heterogeneous reconfigurable computing in data 

centres enabled by photonic switching; (2) split-
computing  [4,5] that combines edge 

 
Fig. 1. Estimated datacenter IP traffic from 2012 to 2021 
broken down by data center type. The total IP traffic is 
estimated to be beyond 20 exabytes per year in 2021. 

(Courtesy of CISCO  ). 

 
Fig. 2. Total Data Traffic Forecast through 2030. 

Source: "Impact of AI on Electronics and Semiconductor 
Industries", IBS, April 2020. 

 
Fig. 3. Computing Power used in training AI Systems 

[Source: OpenAI.com [2], adapted in the Economist [3].] 

 



computing  [6] and cloud computing; (3) 
neuromorphic computing and computing in 
memory (CIM); (4) a new operating system with 
AI/ML resource management.  $3M for training 
transformer natural language processing  [7] 

Flat, Heterogeneous, Reconfigurable 
Disaggregated Computing enabled by 
Photonic Switching and Interconnects 
It is well known that application-specific 
computing systems optimally designed and 
configured for a given workload offer much higher 
(often 50 or more  [8,9]) energy-efficiency and 
throughput compared to general-purpose 
computing systems. Heterogeneous computing 
systems (HCS) exploiting energy and 
performance benefits of combining different 
domain-specific processor architectures (e.g. 
CPUs, GPUs, ASICs) have emerged in modern 
computing systems of different scales - ranging 
from Systems-on-chip to data center and HPC 
systems. Increasing numbers of processing and 
memory resources have led to HCSs of 
increasing scale, with significant computing 
power potential. The memory subsystem in HCS 
is also expected to employ a heterogeneous 
design with different memory technologies (i.e. 
volatile and non-volatile memories) used across 
different nodes.  Furthermore, accelerators 
equipped with neuromorphic processors will be 
part of HCSs. On the other hand, application 
domains like graph analytics and machine 
learning now process terabyte data sets which 
are growing to petabytes. Therefore, the 
performance gains of running these workloads in 
HCSs highly depend on the scaling of the 
memory architecture. In an HCS, some 
accelerators may have embedded memory dies 
and some others may rely on the memory 
connected to the system bus. This non-uniform 
memory architecture (NUMA) significantly 
increases the complexity of programming such 
heterogeneous systems. Ideally, we want any 
compute node to be able to communicate to any 
memory node with sufficient bandwidth without 
introducing complex programming models. We 
want to allow programmers to reference any data 
from any device. Thus, it is desirable that the 
HCS should reconfigure its processor (i.e. CPUs, 
GPUs, ASICs) to memory (volatile and non-
volatile memories) interconnection, following the 
change in the dataflow to optimize its throughput 
and energy efficiency across their disaggregated 
system. Photonic interconnects will not only offer 
an opportunity for disaggregated computing with 
extremely high energy efficiency independently 
of distance, but also offers an opportunity for 
bandwidth reconfigurable heterogeneous 

computing.  This is true at the board-level, rack-
level, and warehouse-scale computing systems. 
Today’s data centre network architectures 
heavily rely on cascaded stages of many power-
hungry electronic packet switches interconnected 
across the data centre network in fixed 
hierarchical communication topologies such as 
Fat-Tree within the data center for homogeneous 
racks and boards (see Error! Reference source 
not found.(a)) [10]. Due to the limited radix and 
bandwidth of the electronic switches, warehouse-
scale data centers involve a large number of 
cascaded electronic switches where high energy 
consumption and latency compound due to 
repeated ‘store-and-forward’ electronic 
processes. These architectures are also 
designed with a fixed topology at fixed data rates. 
On the other hand, as Error! Reference source 
not found.(b) illustrates, employing a passive 
optical fabric or a reconfigurable optical switch 
fabric with distributed electronic switches (e.g. 
ToR) could greatly improve (a) scalability of the 
capacity and the number of compute nodes (or 
racks with ToRs), (b) energy-efficiency of the 
network, (c) modular upgradeability, and (d) cost 
savings by eliminating many large and power-
hungry core electronic switches at the core while 
keeping the smaller and disaggregated electronic 
switches (e.g. ToR) at the edge nodes.  This 
transformation not only flatten the interconnect 
topology of the data center networks with a 
reduced number of hierarchies, but it also brings 
the possibility of optical re-configurability 
enhanced by wavelength division multiplexing 
(WDM) and silicon photonics.  

Self-Supervised vs. Reinforcement or 
Supervised, or Unsupervised Learning 
As Fig. 3 illustrates, AI/ML applications are now 
driving the cost of the energy cost of the data 
systems, and most of this energy cost rises from 
the huge amount of data ingestion required for 
training today’s data systems based on 
reinforcement, supervised, or unsupervised 
learning mechanisms. While the AI/ML based 
control plane for photonic reconfigurable data 
systems showed promising benefits, the 
exponentially increasing energy requirements for 
training are unsustainable.  On the other hand, 
biological systems do not require such a large 
amount of training data because of its self-
learning (e.g. preditive-error learning  [11,12]).  
Hence, self-supervised approach to photonic 
switching would be attractive  [13] 

Cloud-Computing, Edge-Computing, and 
Split-Computing 
While cloud computing with thin client interfaces 



allows clients to easily access the computing 
resources on mobile platforms such as cell 
phones, it requires all data to be ingested into the 
centralized cloud system and casts limitations in 
throughput, latency, and security guarantees. For 
instance, future autonomous vehicles, robots, 
and healthcare systems may acquire 10 Tb/s 
data at the client machines and may need to 
make immediate decisions without delays or 
losses due to connections to the cloud system.  
Today’s autonomous vehicles already have 
sophisticated GPU-based multi-sensory 
computing systems on board, and future systems 
expect to exploit even stronger computing 
capabilities at the edge client machines.  Cloud 
computing will still be valuable in aggregating 
data and offering more global inferences based 
on the aggregated data.  Hence, split-computing 
will be attractive in many of such applications, 
and the balance of edge vs cloud computing will 
depend on the use cases of various applications. 

Federated vs. Brokered Learning Systems 
Consequently, the autonomous systems at the 
edge can be federated into a network of semi-
autonomous learning systems  [14].  While 
federated systems offer more autonomy to the 
edge systems compared to the traditional 
hierarchical systems, the edge systems become 
semi-autonomous since the ‘federation’ assumes 
compromises in policies related to security and 
privacy, etc.  Market-driven brokered system 
architecture  [15–19] offers market-driven 
freedoms and dynamic choices of brokers (can 
be multiple brokers) with opportunities to 
customizing the service-layer-agreements with 
individual brokers.  

Intra-agent and Inter-agent Transfer Learning 
In such a federated or brokered multi-agent edge 
systems, the capability to transfer learn between 
similar but differing tasks within each agent or 
between multiple agents on similar tasks greatly 
reduces the time and energy it takes to train the 
agents  [20–22]  We expect that transfer learning 
process to be an important part of self-supervised 
learning if future computing systems  [23]. 

5G, 6G, and Elastic RF-Optical Networking 
5G and 6G networking with extremely high 
bandwidth and low latency enables 
unprecedented opportunities for distributed 
computing and edge computing in cooperation 
with the cloud.  RF-photonic technologies are 
necessary to support such high-bandwidth, and 
must consider agility in the spectral (both RF and 
optical spectrum), temporal, and spatial domains 
in order to optimize the throughput, latency, and 

energy-efficiency.  Similar flexible networking in 
the optical domain called elastic optical 
networking  (EON) [24] has shown to optimize the 
network resources to achieve ~35% higher 
throughput or network resource savings than rigid 
WDM networks.  Combining the RF-Photonic 
technologies with EON offered the desired 
temporal, spatial, and spectral agility in mobile 
RF networking (ERON)  [25]. 
We expect to see a new generation of 5G, 6G 
networking supported by the ERON 
technologies. 

The Silicon Photonics in future computing 
systems 
Today’s data centres and computing systems are 
rapidly employing silicon photonic transceivers 
due to their small form factors, energy-efficiency, 
manufacturability, and compatibility with the 
silicon CMOS ecosystem.  Expansion of the 
current repertoire of silicon photonics to include 
5G, 6G RF-Photonic silicon photonics, 
reconfigurable silicon photonic switches, and 
coherent optical silicon photonic systems will be 
natural next steps for future computing.  
Furthermore, integration of heterogeneous 
computing modules (GPU, CPU, TPU, DRAMs) 
with silicon photonics is already in progress in the 
form of heterogeneous integration in 2D, 2.5D, 
and 3D, and monolithic integration of such 
electronics and photonics is also in active 
progress.  In the future, such integration may also 
include neuromorphic computing or quantum 
computing accelerators on silicon photonics. 

Summary 
Future computing and data system expects to 
benefit more from photonic-electronic 
reconfigurability of heterogeneous resources that 
are in the network of distributed computing 
systems with edge computing or split-computing.  
Self-learning and brokered learning with multi-
agent transfer-learning can help reduce the 
burden of data ingestion currently doubling in 
volume every 3.3 months. Silicon photonics is 
expected to be ubiquitously integrated in mobile 
and fixed computing systems at the edge and at 
the core computing systems. 

Acknowledgements 
The author is grateful for contributions from many 
collaborators around the world. 

References 
1.  Cisco, "Global data center IP traffic from 2012 to 

2021, by data center type (in exabytes per year)," 
https://www.statista.com/statistics/227268/global-
data-center-ip-traffic-growth-by-data-center-type/. 



2.  D. Amodei, D. Hernandez, G. Sastry, J. Clark, G. 
Brockman, and I. Sutskever, "AI and Compute," . 

3.  The ECONOMIST, "The cost of training machines 
is becoming a problem," The ECONOMIST, 
Technology Quarterly, Computing hardware 
(2020). 

4.  X. Chen and M. G. Xie, "A split-and-conquer 
approach for analysis of extraordinarily large 
data," Stat Sin 24, (2014). 

5.  B. S. Rawal, R. K. Karne, and Q. Duan, "Split-
System: The New Frontier of Cloud Computing," 
in Proceedings - 2nd IEEE International 
Conference on Cyber Security and Cloud 
Computing, CSCloud 2015 - IEEE International 
Symposium of Smart Cloud, IEEE SSC 2015 
(2016). 

6.  N. Benzaoui, "Beyond Edge Cloud: Distributed 
Edge Computing," in Optical Fiber 
Communication Conference (OFC) 2020, OSA 
Technical Digest (Optical Society of America, 
2020), p. W1F.6. 

7.  E. Strubell, A. Ganesh, and A. McCallum, "Energy 
and policy considerations for modern deep 
learning research," in AAAI 2020 - 34th AAAI 
Conference on Artificial Intelligence (2020). 

8.  W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, 
R. C. Harting, V. Parikh, J. Park, and D. Sheffield, 
"Efficient embedded computing," Computer (Long 
Beach Calif) 41, 27–32 (2008). 

9.  A. Abnous and J. Rabaey, "Ultra-low-power 
domain-specific multimedia processors," in VLSI 
Signal Processing, IX (1996), pp. 461–470. 

10.  S. J. B. Yoo, "Prospects and Challenges of 
Photonic Switching in Data Centers and 
Computing Systems," Journal of Lightwave 
Technology 1–1 (2021). 

11.  R. C. O’Reilly, "Biologically Plausible Error-Driven 
Learning Using Local Activation Differences: The 
Generalized Recirculation Algorithm," Neural 
Comput 8, 895–938 (1996). 

12.  R. C. O’Reilly, J. L. Russin, M. Zolfaghar, and J. 
Rohrlich, "Deep Predictive Learning in Neocortex 
and Pulvinar," J Cogn Neurosci 33, 1158–1196 
(2021). 

13.  C.-Y. Liu, X. Chen, Z. Li, R. Proietti, and S. J. ben 
Yoo, "SL-Hyper-FleX: a cognitive and flexible-
bandwidth optical datacom network by self-
supervised learning [Invited]," Journal of Optical 
Communications and Networking 14, A113–A121 
(2022). 

14.  H. Brendan McMahan, E. Moore, D. Ramage, S. 
Hampson, and B. Agüera y Arcas, 
"Communication-efficient learning of deep 
networks from decentralized data," in 
Proceedings of the 20th International Conference 
on Artificial Intelligence and Statistics, AISTATS 
2017 (2017). 

15.  L. Liu, Z. Zhu, X. Wang, G. Song, C. Chen, X. 

Chen, S. Ma, X. Feng, R. Proietti, and S. J. B. Yoo, 
"Field Trial of Broker-based Multi-domain 
Software-Defined Heterogeneous Wireline-
Wireless-Optical Networks," in Optical Fiber 
Communication Conference (Optical Society of 
America, 2015), p. Th3J.5. 

16.  L. Sun, X. Chen, S. Zhu, Z. Zhu, A. Castro, and S. 
J. B. Yoo, "Broker-based Cooperative Game in 
Multi-Domain SD-EONs: Nash Bargaining for 
Agreement on Market-Share Partition," in ECOC 
2016; 42nd European Conference on Optical 
Communication (2016), pp. 1–3. 

17.  L. Sun, S. Zhu, X. Chen, Z. Zhu, A. Castro, and S. 
J. B. Yoo, "Broker-based multi-task gaming to 
facilitate profit-driven network orchestration in 
multi-domain SD-EONs," in 2016 Optical Fiber 
Communications Conference and Exhibition 
(OFC) (2016), pp. 1–3. 

18.  D. Marconett and S. J. B. Yoo, "FlowBroker: A 
Software-Defined Network Controller Architecture 
for Multi-Domain Brokering and Reputation," 
Journal of Network and Systems Management 1–
32 (2014). 

19.  S. J. B. Yoo, "Multi-domain Cognitive Optical 
Software Defined Networks with Market-Driven 
Brokers," in European Conference and Exhibition 
on Optical Communication (ECOC) (2014), p. 
We.2.6.3. 

20.  C.-Y. Liu, X. Chen, R. Proietti, and S. J. ben Yoo, 
"Evol-TL: Evolutionary Transfer Learning for QoT 
Estimation in Multi-Domain Networks," in Optical 
Fiber Communication Conference (OFC) 2020, 
OSA Technical Digest (Optical Society of 
America, 2020), p. Th3D.1. 

21.  X. Chen, R. Proietti, C.-Y. Liu, Z. Zhu, and S. J. 
ben Yoo, "Exploiting Multi-Task Learning to 
Achieve Effective Transfer Deep Reinforcement 
Learning in Elastic Optical Networks," in Optical 
Fiber Communication Conference (OFC) 2020, 
OSA Technical Digest (Optical Society of 
America, 2020), p. M1B.3. 

22.  S. J. Pan and Q. Yang, "A survey on transfer 
learning," IEEE Trans Knowl Data Eng (2010). 

23.  R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. 
Ng, "Self-taught learning: Transfer learning from 
unlabeled data," in ACM International Conference 
Proceeding Series (2007). 

24.  O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, 
"Elastic optical networking: a new dawn for the 
optical layer?," Communications Magazine, IEEE 
50, s12–s20 (2012). 

25.  H. Lu, Y. Zhang, Y. Ling, G. Liu, R. Proietti, and S. 
J. B. Yoo, "Experimental Demonstration of 
mmWave Multi-Beam Forming by SiN Photonic 
Integrated Circuits for Elastic RF-Optical 
Networking," in 2019 Optical Fiber 
Communications Conference and Exhibition 
(OFC) (2019), pp. 1–3. 


