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Abstract—We propose a brain-derived—rather than a brain-inspired—Neuromorphic Computing architecture for flexible learning 
intelligent systems capable of handling complex tasks in unpredictable environments. We will discuss 3D Nanophotonic-Nanoelectronic 
integrated circuits that can realize energy-efficient, high-throughput, and scalable realization of brain-derived Neuromorphic Computing. 
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I. INTRODUCTION  
For many decades, there have been world-wide efforts to design and realize a brain-like flexible learning system of similar 

capability, comparable power consumption, and compact size as the human brain.  While the software and algorithms for machine 
learning (ML) and artificial intelligence (AI) have advanced remarkably, the actual ML and AI hardware systems lagged significantly 
compared to the brain in terms of its flexible learning capability and its size, weight, and power.  Current approaches in ML and AI 
are based on computational architectures that are loosely inspired by the brain. While the AI agents have been able to outperform 
humans at complex games like “Go” [1] and “Chess” when trained on a relatively narrow range of tasks, they often require a 
considerable degree of training, and they are brittle in the face of unexpected changes to task characteristics. The human brain, in 
contrast, is capable of remarkably fast learning in a manner that is flexible and enables generalization to new situations and tasks, and 
it does so with a remarkably low level of energy consumption relative to traditional computational hardware.  For example, the 
natural-language model, Generative Pre-trained Transformer 3 (GPT-3), consists of 175 billion parameters and requires 9.8E29 FLOP 
for a single training on Tesla V100 GPUs [2], corresponding to ~$10M for the energy cost alone, far surpassing the estimated energy 
consumption for a human brain.  The popularity of the deep learning AI systems is currently driving AI-related energy-consumptions 
to double every 3.4 months [3], [4]  On the other hand, neuromorphic computing hardware efforts (e.g., IBM’s TrueNorth [2], Intel’s 
Loihi [3], University of Manchester’s SPINNAKER) have not been able to reproduce the uniquely flexible and adaptive nature of 
human intelligence, and the scalability, throughput, and energy-efficiency have also been lagging. 

II. FUNDAMENTAL SCIENTIFIC AND TECHNOLOGICAL GAPS IN THE CURRENT BRAIN-INSPIRED NEUROMORPHIC APPROACHES  
The recently rising consensus is that this disparity is due to the fundamental scientific and technological gaps listed [5] below: 
Table 1. The four fundamental scientific and technological gaps between the biological and the typical neuromorphic computing systems. 

Gap 1: Methods to realize bio-realistic algorithms and models. The algorithms and models used in biological neural networks are likely 
why the brain is so efficient in performing many tasks such as learning, which cannot be efficiently realized with high fidelity using CMOS 
hardware. 

Gap 2: Next generation bio-inspired materials with neuromorphic dynamics. CMOS technologies were created for logic operation and 
arithmetic computation, and thus their dynamics are not well matched with the dynamics that are critical for neuromorphic computing. The 
dynamics of neurons, synapses and dendrites come from ion diffusion, which is not present in CMOS devices. 

Gap 3: Innovative circuits to serve as required computing elements. Different from the traditional linear circuits built with CMOS devices, 
bio-realistic circuit designs should be highly nonlinear and rich in dynamics, which present great challenges in unconventional circuit designs. 
There is a lack of research to take advantage of the intrinsic nonlinear dynamics in designing novel circuit elements to efficiently and faithfully 
emulate synapses, neurons, and dendrites. 

Gap 4: Scalable computing architecture. Even with more capable and suitable devices and circuits, there is a lack of research and existing 
knowledge on how to construct a scalable architecture for real-world problems. It requires co-designs and co-optimizations across different 
system abstract layers to incorporate the desired properties of the new materials and circuits to realize an efficient, reliable, and scalable 
computing system. 

III. NEW APPROACHES:  BRAIN-DERIVED NEUROMOPRHIC COMPUTING BY 3D NANOPHOTONIC-ELECTRONIC INTEGRATED CIRCUITS 
We propose to pursue Brain-Derived rather than Brain-Inspired neuromorphic computing that addresses the four Gaps of Table 1 

and exploiting the new direction depicted in Figure 1.  The new 3D Nanoscale Photonic-Electronic neuromorphic computing pursues  
new material, device, circuit, and system capabilities of co-designed 3D photonic and electronic integrated circuits (3D EPICs) 
designed for hierarchical learning.  As Figure 2 illustrates, the proposed 3D nanoscale photonic-electronic integrated circuits for 



hierarchical neuromorphic computing consisting of photonic neuromorphic computing circuits and electronic/ionic neuromorphic 
integrated circuits [6], [7]. 

 
Figure 1. comparisons between the biological system (human brain), the CMOS Neuromorphic Computing (e.g. TrueNorth), and the proposed 3D 
Nanoscale photonic-electronic neuromorphic computing. 

 
Figure 2. The proposed 3D nanoscale photonic-electronic integrated circuits for hierarchical neuromorphic computing consisting of photonic 
neuromorphic computing circuits and electronic/ionic neuromorphic integrated circuits. 
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• Information transmission at 20,500 
ATP/bit (1.04 fJ/bit at 32 bit/s.) 

• Firing a spike costs:106 -107 ATP/bit or 
50-500 fJ/bit (depending distance on the 
axon)

• Fanout of ~8,000 per neuron
• Total ~100 billion neurons
• Total 1000 trillion synaptic 

interconnections
• Average power ~ 20 Watts
• Cognitive Learning Capabilities

Nanoscale Photonic-Electronic 
Neuromorphic Computing

• Best-of-Both-Worlds: photonics and 
electronics

• Optical Parallelism in wavelength/ time/ 
space

• Information transmission: 1 fJ/b at 10 
Gb/s independent of distance 

• Firing a spike: 10 fJ/b
• Fanout: ~8000 per neuron possible
• Forward/backward propagation training
• Self-learning possibility
• Matrix-multiplication in optical mesh 
• Extremely low noise (shot-noise limited)
• Fast optical barrier synchronization
• Sparse processing overcoming poor 

locality of data & info
• 3D photonic-electronic integrated 

circuits

Biological System
(Human Brain)

CMOS Neuromorphic 
Computing (e.g. TrueNorth)

• 5.4-billion-transistors
• 4096 neurosynaptic cores 
• Interconnects 1 million programmable spiking neurons 

256 million configurable synapses.
• Chips can be tiled in 2D
• 63 mW for multiobject detection and classification of 

400x240 at 30 fps.
• 2.3 pJ/bit with an additional 3 pJ/bit for every 

cm transmission.
• long electrical wires that lead to large 

capacitance values and high interconnect 
energy consumption.

• 2D interconnection topology in N-E-W-S
• Off-line training.
Other (analog) electronic neuromorphic systems in 
general face challenges due to barrier-
synchronization, thermal noise accumulation, and 
communications
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